
H E A T  T R A N S F E R  I N  T H E  C A S E  OF A S E M I I N F I N I T E  

B O D Y  H E A T E D  BY T H I N  P A R A L L E L  P L A T E S  

I .  A. S t r a k h o v  UDC 536.241 

An exact  solution is obtained to the s teady-s ta te  heat conduction problem with mixed 
boundary conditions. The solution is car r ied  out by the author ' s  own method shown in 
ear l ie r  publications [4-6]. 

A solution is sought to the following two-dimensional  s teady-s ta te  heat conduction problem. 

On a semiinfinite body are mounted n + 1 thin paral lel  plates, each of which is held at a constant t em-  
pera ture  To, T i . . . . .  T n. These plates are oriented perpendicular ly to the flat surface of the body, but the 
spacing of their fins is a rb i t r a ry  (Fig. la). The heat is t ransmit ted through the flat surface of the body. The 
ambient t empera ture  is zero. 

Mathematical ly the problem is formulated as follows. Let the sought temperature  be T = T(x, y). We 
then require  the solution to the equation 

O~T 02T 4- - -  = 0  (1) 
Ox ~ ay  2 

in the upper half-plane with sections at which the following constra ints  apply: 

TJ . . . .  = T o ,  b o < g < oo, 
T[x=al = TI' bl < g < ~ '  (2a) 

�9 ~ . �9 . . . .  . o . �9 �9 o 

TIx-a,~ = T,~, b~ < g < oo. 

Here (a0, b0) , (at, bt) , . . . .  (an, bn) are the coordinates of the section endpoints. The following boundary 
condition of the third kind is satisfied at the interface with the ambient medium: 

0T [ 
- -  gO-- + hT = O, - -  oo < x < oo. (2b) 

g~O 

We will seek a solution to the problem which is continuous up to the interface and is bounded at in- 
finity. 

The method of solution is as follows. F i r s t  the original  region is mapped conformally  onto the f i rs t  
quadrant.  This is done with the aid of the Chr i s to f fe l -Schwarz  t ransformation.  At that time the heat omit-  
ting boundary becomes the rea l  semiaxis  in the new complex plane, while the ver t ica l  beams become s e g -  
ments on the imaginary  axis (Fig. lb). Then we construct  in this quadrant a function whose rea l  par t  is the 
solution to our problem (1)-(2). The procedure  for constructing such a function has been described ea r l i e r  
in [4, 5, 7]. 

This conforma[ mapping of the original region of the z = x + iy plane onto a quadrant of the w = u + iv 
plane is achieved by means of the relat ion 
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Fig. 1. a) Reg ion  for  which a so lu t ion  is sought;  b) this  
region after eonformat mapping. 

1 

+ 
1 k=O d;. (3) 

Here  C is a r e a l  pos i t ive  cons tan t .  The s e c t i o n  endpoin ts  z = a k + ib k (k = 0, 1, . . . , n) a re  mapped into 
points  w = iqk (k = 0, 1, . . . , n) on the i m a g i n a r y  axis .  The s e c t i o n  endpoin ts  t ending  to in f in i ty  a re  mapped 
in to  points  w = ip k (k = 1, 2, . . . , n) on the i m a g i n a r y  axis  and, thus,  the s e c t i on  edge f r o m  point  z = a o 

+ ib 0 to in f in i ty  is  mapped into s e g m e n t  u = 0 (0 < v < Pl) on the i m a g i n a r y  axis ,  etc.  In th is  way, points  

w = iq k (k = 0, 1, . . ~ , a) and points  w = ipk (k = 1, 2, . . . .  n) a l t e r n a t e  on the i m a g i n a r y  axis .  The o r i g i n a l  
r e g i o n  con ta ins  ~wo r i g h t  ang les  whose v e r t i c e s  a r e  located at in f in i ty .  F u n c t i o n  

z=z(w)  

has been  cons t ruc t ed  so that  the v e r t e x  of one r igh t  angle in  the o r i g i n a l  r e g i o n  is  mapped into the o r i g i n  
of c o o r d i n a t e s  i n  the w-p l ane ,  white the v e r t e x  of the o ther  r igh t  angle is  mapped into a point  at in f in i ty .  
Po in t  z = 0 i s  mapped in to  point  w = 1 and, t he r e fo re ,  t he r e  i s  no second  cons t an t  in  the t r a n s f o r m  (3). 
Po in t s  t q k ( k = 0 ,  1, . . .  , n) a n d i P k  ( k = 1 , 2 ,  . . . ,  n) and cons t an t  C can  now be d e t e r m i n e d  un ique ly  
acco rd ing  to the w e l l - k n o w n  r u l e s  of the C h r i s t o f f e l - S c h w a r z  t r a n s f o r m a t i o n .  

The Lap lace  equa t ion  is  i n v a r i a n t  with r e s p e c t  to the t r a n s f o r m a t i o n  of c oo r d i na t e s  involved in  con -  
f o r m a t  mapping .  T h e r e f o r e ,  func t ion  T = T(x(u, v), y(u, v)) s a t i s f i e s  the Lap lace  equat ion:  

a 2T ~_ 0 ~T au ~ ~ = O, (4) 

The bounda ry  condi t ions  for  func t ion  T a re  

TI~,= o = T O , O < v < pl, 

T [ ~ o = T 1 ,  P 1 < v < P ~ ,  

The b o u n d a r y  condi t ion  at the wall  i s  t r a n s f o r m e d  as fol lows:  

1 OT + h T  = o = 0  ' O < a < r  

which t o g e t h e r  with (3) y ie lds  

(ha) 

• I  h V~O ~ 
OT 

- - u  2 (u2+p~) -~v + hC (u2@q~) T 0, O < u < o o .  

k = l  k ~ O  

(hb) 

We wilt  now follow the p r o c e d u r e  out l ined in  [1-3]. We s e e k  a so lu t ion  to the p r o b l e m  in  the f o r m  

T = Re �9 (w), (6) 
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where function q~(w) is analytic within any finite 0 < a rgw < 7r/2 region of the complex w = u + iv plane. 
According to (5a) and (5b), this function must  sat isfy the boundary conditions 

Re 

Re �9 (w)l~=l~ = T 0, 0 < v < Pl, 
Re ~F (w)[~=~o = T 1, P l  < V < :  P 2 '  

Re/F (w)l~=~o = T~, p~ < v < 00; 

[--iw" H (w2q-P~) dT (9) + hC (w~+q~) T(w) = O, 
I dw 

k = l  k=O 

O < u <  oo. 

(Ta) 

(7b) 

Function #(w) has a logari thmic singulari ty at  the boundary points w = 0, w = iPk (k = 1, 2, . . . .  n), and 
at infinity. For  this reason,  it is worthwhile to replace ~I,(w) by a new analytic function X(w) which would 
sat isfy the homogeneous boundary condition on the imaginary  axis and which would be continuous within 
a closed region. Functions q(w) and X(w) are related as follows: 

r n 

aF(w) = X(w)+2~xt T~ ~xil Z(T~_I_Tk)  [ln(w+ip~)+ln(w_ipk)]. 
k ~ l  " 

The boundary conditions for function X(w) become 

ReX(w)l~=~, = 0, 0 < v <  oo, 

[ I-I z 2 ~ + h C ~ ( w + q , ) X ( w ' ] ] w = u  dw 
k=l k=O 

(s) 

(9a) 

--~{ ak~: i Tk"l--Tk } I1 = . T o - - . 3  = 0 < . < o o .  
u +Pk 

= k = l  

(9b) 

Function X(w) sat isf ies  the following condition at infinity: 

x (w) = o (Iwl-1), Iwl oo, 0 < arg W -~ ~/2. (10) 

We note that the coefficients of dX(w)/dw and X(w) in (9b) eontain only even powers of w. In this 
case it is possible then to apply the suggested procedure  for finding a function which i s  analytic in the 
half-plane and which sat isf ies  at the boundary a condition of the same kind as condition (9b) [4, 5]. 

The express ion inside the square  brackets  in (9b) represen t s  a function which is analytic within the 
f i r s t  quadrant  and continuous on the boundary. We will seek this function in the form 

n 

--iw2 R (w'+p~) dX(w) + hcIl(w2+q~ ) X(w) dw 
k ~ l  k=O 

n X 
k = l  k = l  k~O 

Here ce k (k = 0, 1, . . . , n) are cer ta in  rea l  constants.  They will be determined f rom the conditions that 
function X(w), which is defined as the solution to the ord inary  differential equation (11), be bounded within 
the f i rs t  quadrant and sat isfy the boundary condition (9a). 

For  integrating (11) we use the representa t ion  

(12) 

I I  
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where  

17 q~ 
A - -  k ~ o  

n 

I-[ P~ 

(13) 

After  that,  we obta in  

x <o) :o., (o_ ,o(~ 1'----,-_ 
k = l  

w k = l  

(14) 

with  (10) taken into account  and with the fol lowing des igna t ion :  

n 

2 __~ --2 2 - - "  n 

e(~) = :~-7 ~=i ~ +pk T ~ 1-[ (~+P~)  
(15) 

In (14) we choose those b r a n c h e s  of the func t ion  (w - ipk) (ak-ak-1)h/~, (w + iPk) (ak-ak-1)h/~ (k = 1, 2, 
�9 . . , n) which at w - -  o~ tend toward u(ak-ak-l)h/~along the pos i t ive  r e a l  axis .  The i n t e g r a t i o n  is  p e r -  
f o r m e d  along any path in  the f i r s t  q u a d r a n t  not p a s s i n g  through point  w = 0. 

F u n c t i o n  X(w) (14) with an a r b i t r a r y  se t  of cons t an t s  c~ k (k = 0, 1, . . . , n) is  con t inuous  at all  poin ts  
on the boundary ,  except  at points  w = 0 and w = iPk (k = 1, 2, . . . , n). In s a t i s fy ing  the condi t ion  

i ({  exp ihC ~ -- T, \--(+ ip----]] J ~ (16) 
ip h s = l  

(k  = 1, 2 . . . . .  n) 

points  w = iPk a r e  r e m o v a b l e  s i n g u l a r i t i e s  of func t ion  X(w). When  c o n s i d e r i n g  the behav io r  of func t ion  X(w) 
(14) in  the v i c i n i t y  of point  w = 0, we note that this  point  i s  an e s s e n t i a l  s i n g u l a r i t y  of the func t ion  

We e x t r a c t  s e c t o r  0 < 6 _< a r g w  -< rr/2 and we r e q u i r e  tha t  

eo 

A ~--iph )(ah--ah'l)a/r:] F (~)d~=O, 
.fexp (ihC (~---~))  [ ~  ( ~ +iph 
0 k = l  

(17) 

where  the i n t e g r a t i o n  is  p e r f o r m e d  along any cu rve  wi th in  th is  s e c t o r .  When condi t ion  (17) is  sa t i s f i ed ,  then 
the fol lowing l i m i t i n g  p r o c e s s  is  val id :  

lim X(w)= ia~ , 0 ( 6 ~ ' a r g  w--% --=--~ �9 (18) 
n 

~o hC I I  q~ 2 
k=O 

The i n t e g r a t i o n  in  (16) and (17) can  be p e r f o r m e d  along the i m a g i n a r y  axis .  
the i n t e g r a l s ,  we a r r i v e  at the fol lowing s y s t e m  of equa t ions :  

n 

iph s= 1 

(~ = o ,  1 . . . . .  n )  

Successively subtracting 

F (~).d~=0 
(19) 
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w h e r e  P0 = 0 and whe re  i p n + l  denotes  a point r e m o v e d  to infinity. Changing to a r e a l  va r i ab l e  of i n t e g r a -  
t ion  in (19) will  yield a s y s t e m  of n + 1 l inear  a lgeb ra i c  equat ions  with r e a l  coef f ic ien ts  fo r  de t e rmin ing  n 
cons tan t s  a k  (k = 0, 1 . . . . .  n). 

With this choice  of cons tan t s ,  the l imi t ing  p r o c e s s  (18) is val id a l so  for  w ~ 0 along the posi t ive  r e a l  
axis .  

When condi t ion (16) is sa t i s f ied ,  e n s u r i n g  the cont inui ty  of funct ion X(w) (14) at points  w = ip k (k 
= 1, 2, . . , , n) on the boundary ,  the bounda ry  condi t ion  (9a) will  a lso  be sa t i s f ied  on the en t i r e  i m a g i n a r y  
axis .  This  can be proved  eas i ly ,  if ReX(w) is ex t r ac t ed  in each  s e g m e n t  u = 0, Pk < v < Pk+ l  (k = 0, I ,  
, . ~ , n ) ~  

An asympto t i c  e s t ima te  of (10) is made  on the bas i s  of f o r m u l a  (14), by in tegra t ing  in par t s .  

Thus ,  funct ion X(w) (14) is r e g u l a r  within the f i r s t  quadran t  and, by v i r tue  of its p r o p e r t i e s ,  funct ion 
T = T(x, y) defined by (6), (8), (14) s a t i s f i e s  all condi t ions  (1)-(2) s t ipula ted  in the p rob lem.  

F o r  i l lus t ra t ion ,  we will  c o n s i d e r  the so lu t ion  to a spec i f i c  p r o b l e m  where  the heat  s o u r c e  is a s ingle  
plate  held at the t e m p e r a t u r e  T 0. In this ca se  condi t ions  (2) b e c o m e  

T]~=o = Vo, b < y < o o ,  (20a) 

OT' + hT ]Iv o = O, 00 < x < oo, (20b) 
Oy = 

and the mapping  funct ion (3) is 

z = 2 w - -  . (21) 

Af ter  a change to new v a r i a b l e s ,  the p r o b l e m  r e d u c e s  to one of de t e rmin ing  a funct ion ~(w) which 
is  r e g u l a r  in  the 0 < a r g w  < 7r/2 q u a d r a n t  and which sa t i s f i e s  the condi t ions  

Re~/(w)Jw=iu = To, O < v < .  o0, (22a) 

dw + b h ( w 2 + l ) ~ ( w )  = 0 ,  0 < u < o o .  (22b) 
t o = U  

Assuming ,  as  be fore ,  tha t  

q.r (w) = X (w) + .~2 To In w (23) 
~ t  

and applying the conventional method, we obtain 

+ 2  (24) 

The cons tan t  ~ he re  is  d e t e r m i n e d  f r o m  the condi t ion  that  X(w) is f ini te  at point w = 0, which r e s u l t s  in the 

equa t ion  

exp i - ~  g - -  +nt--"  d ; = 0 .  (25) 

0 

F r o m  this  fol lows 
4 Ko (bh) 

. . . .  , ( 2 6 )  

a Kl (bh) 

where  K o (bh), K 1 (bh) a r e  MacDonald  funct ions .  

F o r  the t e m p e r a t u r e  d i s t r ibu t ion  ove r  the body s u r f a c e  we have obtained the fol lowing exp re s s ion :  

i t ]} 2 / fsin h (t - -  x) 1 Ko (bh) t 
T (x, 0) To V t~+b  2 

X x 

( O ~ x <  oo). 

(27) 
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Fig. 2. Tempera tu re  distribution along the heat emi t -  
ting wall: a) hb = 1; b) hb = 2. 

Specifically, for large values of x we have the asymptotic formula  

2 1 
T(x, 0 ) ~ T  0 - - -  , x-'+ oo. 

hx 
(28) 

Numerical  computations have been performed for the following pa ramete r  combinations: a) hb = 1; b) hb 
= 2. The resul ts  are shown in Fig. 2. 

In conclusion, we note that for this special  case n = 0 (a single plate) the problem can be solved 
di rec t ly  by a separat ion of variables  in elliptical coordinates.  A determinat ion of the expansion coefficient 
in the integral  representa t ion  of the sought function reduces  to the solution of cer ta in  funct ional-difference 
equation. The resul ts  obtained that way agree with the resul ts  of our calculation here. The method of 
separat ing var iables  cannot, however, be extended to the general  case of any number of heating plates. 

T k (k = 0, 1 . . . . .  n) 
T 
h 

ak, b k ( k = 0 ,  1 . . . .  , n) 

N O T A T I O N  

are the tempera tures  of the parallel  plates; 
is the tempera ture  within the region; 
is the hea t - t r ans fe r  coefficient; 
is the fir ing constant at the plates. 
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