HEAT TRANSFER IN THE CASE OF A SEMIINFINITE
BODY HEATED BY THIN PARALLEL PLATES

I. A, Strakhov UDC 536.241

An exact solution is obtained to the steady-state heat conduction problem with mixed
boundary conditions, The solution is carried out by the author's own method shown in
earlier publications [4-6].

A solution is sought to the following two-dimensional steady-state heat conduction problem.

On a semiinfinite body are mounted n + 1 thin parallel piates, each of which is held at a constant tem-~
perature Ty, Ty, ..., T,,. These plates are oriented perpendicularly to the flat surface of the body, but the
" spacing of their fins is arbitrary (Fig. 1a). The heat is transmitted through the flat surface of the body. The
ambient temperature is zero, :

Mathematically the problem is formulated as follows. Let the sought temperature be T = T (x, y). We

then require the solution to the equation .
T T

AL RN (1)
ax® + ay*

in the upper half-plane with sections at which the following constraints apply:

Tlx::an == TO' bo < y < o,
T[x=a1 = Tlv b]_ < Yy < 00, ) (2a)

..............

Here (ag, by), (@4, by), . . ., {@p, bn) are the coordinates of the section endpoints. The following boundary
condition of the third kind is satisfied at the interface with the ambient medium:
_OT | —0, — sw<x<oo. (2b)
ay g=0

We will seek a solution to the problem which is continuous up to the interface and is bounded at in-
finity. '

The method of solution is as follows. First the original region is mapped conformally onto the first
quadrant. This is done with the aid of the Christoffel —Schwarz transformation. At that time the heat omit-
ting boundary becomes the real semiaxis in the new complex plane, while the vertical beams become seg-
ments on the imaginary axis (Fig. 1b). Then we construct in this quadrant a function whose real part is the
solution to our problem (1)-(2). The procedure for constructing such a function has been described earlier
in [4, 5, 7]. :

This conformal mapping of the original region of the z = x + iy plane onto a quadrant of the w =u + iv
plane is achieved by means of the relation ‘
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Fig. 1. a) Region for which a solution is sought; b) this
region after conformal mapping.
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Here C is a real positive constant. The section endpoints z = a) + ib (k=0,1,...,n) are mapped into
points w =iqy (k =0, 1, ..., n) onthe imaginary axis. The section endpoints tending to infinity are mapped

into points w =ipy k =1, 2, ..., n) on the imaginary axis and, thus, the section edge from point z =g,
+iby to infinity is mapped into segment u = 0 (0 < v < py) on the imaginary axis, etc, In this way, points
w=igy k=0,1,...,n) and points w =ipk (k =1, 2, ..., n) alernate on the imaginary axis. The original
region contains two right angles whose vertices are located at infinity, Function

z=2z{(w)

has been constructed so that the vertex of one right angle in the original region is mapped into the origin
of coordinates in the w-plane, while the vertex of the other right angle is mapped into a point at infinity.
Point z = 0 is mapped into point w =1 and, therefore, there is no second constant in the transform (3),
Points iqy k=0,1,...,n andipg k=1,2,..., n) and constant C can now be determined uniquely
according to the well-known rules of the Christoffel —Schwarz transformation.

The Laplace equation is invarjant with respect to the transformation of coordinates involved in con-
formal mapping. Therefore, function T = T(x(u, v}, y(u, v)) satisfies the Laplace equation:
*T | T ‘ .
Ik 4
o +or =0 (4)
The boundary conditions for function T are
TJL(::O = To, 0<0<p1,

Tmo =Ty P <v<py (52)

n

The boundary condition at the wall is fransformed as follows:

! or =0, 0<<u<C oo,

v=0

which together with (3) yields

n

or -
— [] e+ ) 2 he [Tewrgr

k=1 k=0

=0, 0<<u<C o0, (5b)

=0

We will now follow the procedure outlined in [1-3], We seek a solution to the problem in the form

T —Re¥@), (6)
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where function ¥(w) is analytic within any finite 0 < argw < 7/2 region of the compiex w = u + iv plane,
According to (5a) and (5b), this function must satisfy the boundary conditions

Re ¥ (@)|ypucio = Ty 00 <<y,
ReV¥ (w)|w=iv = T11 P1 <v<< Pa» (73.)

Re [—iw2 n (w2+p2k)iq;—@)— + hC n {w+-qk) ‘I’(w)J =0, _
k=1 @ k=0 wen (7b)
0<<u<C oo,
Function ¥(w) has a logarithmic singularity at the boundary points w =0, w =ipy k =1, 2, ..., n), and

at infinity, For this reason, it is worthwhile to replace ¥(w) by a new analytic function X (w) which would
satisfy the homogeneous boundary condition on the imaginary axis and which would be continuous within
a closed region. Functions ¥(w) and X (w) are related as follows:

¥ (@) = mw+~me——Y?ma—anwwmmwﬂm] )

k._.

The boundary conditions for function X (w) become

Rex(w)|w=iv =0, 0<v<oo, ’ (93')
T X (@) -
R . 2 2 1 2) TN hc w2 2 Xw wett
e[ iw n(w—!pk) e + n( +4;) (‘)]
- k=1 k=0
2 Y DT T
e B T, o<u<e | (9b)
— k=
Function X(w) satisfies the following condition at infinity:
X(w) = 0(jw™), lw|—>o0, 0L argw n/2. (10

We note that the coefficients of dX(w)/dw and X (w) in (9b) eontain only even powers of w, In this
case it is possible then to apply the suggested procedure for finding a function which is analytic in the
half-plane and which satisfies at the boundary a condition of the same kind as condition (9b) [4, 5].

The expression inside the square brackets in (9b) represents a function which is analytic within the
first quadrant and continuous on the boundary. We will seek this function in the form

—ie] | (wr o pt) 22 + e ﬂ wt+) X@

k=1 k=0
n n n
2 Th—— —T . ok .
= | wT, —w® E:—-—J—-—k w*+p2) + i E oW, (11)
T [ w ° wz+pz ] n ( k) k.
. k=1 k=1 k=0
Here o) (k =0, 1, ..., n) are certain real constants. They will be determined from the conditions that

function X(w), which is defined as the solution to the ordinary differential equation (11), be bounded within
the first quadrant and satisfy the boundary condition (9a}.

For integrating (11) we use the repre‘sentation

ﬁwwm

1 0 o (@, —ay_1) Ps ak—l) P 12
w?-4-p7

=1L
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i
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where
[14
A== (13)

n
[1r2
k=1

After that, we obtain

- ) A n ' _4}_ ipk )(ak—ak.l)h/n
X (@) =exp | —ihC [w— = — Ltk
@ =oe(—ie (o )T (250

oo n
-

<\ exp (ihC ( - %) ) [k[] (—E—i—%ﬁ—)mk—ak'l)hm]l’@) dt, (14)

. b ]
with (10) taken into account and with the following designation:

14

F@) = :%[ZO._.Q TL—I“_T’%]

15
g reulN SRS (2]

In (14) we choose those branches of the function (w — ipy) (e ~a-y)h/ 7T, (w +ipy) (@g—ax-yb/ k=1,2,

., ) which at w — =« tend toward ulak—ag-)b/w along the positive real axis. The integration is per-
formed along any path in the first quadrant not passing through point w = 0.

Function X(w) (14) with an arbitrary set of constants o) k=0, 1, ..., n) is continuous at all points

on the boundary, except at points w =0 and w =ip; k=1, 2, ..., n). In satisfying the condition
e \ " ] (as—-as_ Ya/m
ool (1= 2155 s
iph s=1
*k=12,...,nm

points w = ip; are removable singularities of function X(w). When considering the behavior of function X(w)
(14) in the vicinity of point w = 0, we note that this point is an essential singularity of the function

exp (——ihc( w— —i—\)) .

We extract sector 0 < 0 < argw =< 7/2 and we require that

n

T ) A L—ip, \(ox 0¥ ‘
exp (inC (£ — _)) [ (——— F (9 dg=0, (17)
§ P ( ( g n E+ipy
0 k=l
where the integration is performed along any curve within this sector. When condition (17) is satisfied, then
the following limiting process is valid:

lim X ()= ——2— 0<6<~argw<,i‘2—. (18)
w—0
hCTT 9

k=0

The integration in (16) and (17) can be performed along the imaginary axis. Successively subtracting
the integrals, we arrive at the following system of equations:

n

Dpiy , a—a I/
oo 1155

L'ph s=1

(k=0,1,...,n)

(19)



where p, = 0 and where ipy ;4 denotes a point removed to infinity., Changing to a real variable of integra-
tion in (19) will yield a system of n + 1 linear algebraic equations with real coefficients for determining n
constants o k=0,1,..., D), '

With this choice of constants, the limiting process (18) is valid also for w — 0 along the positive real
axis. '

When condition (16) is satisfied, ensuring the continuity of function X(w) (14) at points w = ipj, (k

=1,2, ..., n) onthe boundary, the boundary condition (9a) will also be satisfied on the entire imaginary
axis. This can be proved easily, if ReX(w) is extracted in each segment u =0, py < v < pk+4 k =0, 1,
., N,

An asymptotic estimate of (10) is made on the basis of formula (14), by integrating in parts.

Thus, function X(w) (14) is regular within the first quadrant and, by virtue of its properties, function
T = T(x, y) defined by (6), (8), (14) satisfies all conditions (1)-(2) stipulated in the problem.

For illustration, we will consider the solution to a specific problem where the heat source is a single
plate held at the temperature T;. In this case conditions (2) become

Tlx:o = To: b< y< oo, (Zoa’)
_;5_T+hr =0, — oo<Cx<C o0, (20b)
6y y=0 )
and the mapping function (3) is
b 1
= —w— —1. 21
2= 2 (‘w, w ) @1)

After a change to new variables, the problem reduces to one of determining a function ¥(w) which
is regular in the 0 < argw < n/2 quadrant and which satisfies the conditions

- o Re ¥ (@) iy = To» 0 <<V << 00, (22a)
Re[—i2w’ dq;(w) + bk (w 2+1)‘I'(w):H =0, 0<u< oo. 22b)

Assuming, as before, that
‘F(w):X(w)-}——j—i— T,Inw (23)

and applying the conventional method, we obtain

o A\\ [ [.bh I a 2
X(w):Toexp(—z?(w»;))fexp (L—é—(g—-g—»[ o0 —l— ; ;]dg (24)
The constant o here is determined from the condition that X(w) is finite at point w = 0, which results in the
equation i
r bh 1 « 2 1
{ —| & — — — = . — 1 d;=0. 25
jex"(’z(’ o) 1 )
.0 N ,
From this follows
4 K,0m (bh) %
T Keh #9)

where Ky{bh), K;({ph) are MacDonald functions.

For the temperature distribution over the body surface we have obtained the following expression:

a2 smh(t—x) 1 K, (bh) § hit— [ 1———5——] dt 27
T (x’v 0) ey { mgz_ dt b Kl (bh) cos ( V/ tz + bz } ( )
(0 < x<< ).
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Fig. 2. Temperature distribution along the heat emit-
ting wall: a) hb =1; b) hb = 2.

Specifically, for large values of x we have the asymptotic formula

T OmT, 2 5 (28)

g

Numerical computations have been performed for the following parameter combinations: a) hb = 1; b) hb
=2, The results are shown in Fig. 2.

In conclusion, we note that for this special case n = 0 (a single plate) the problem can be solved
directly by a separation of variables in elliptical coordinates. A determination of the expansion coefficient
in the integral representation of the sought function reduces to the solution of certain functional-difference
equation. The results obtained that way agree with the results of our calculation here, The method of
separating variables cannot, however, be extended to the general case of any number of heating plates,

NOTATION
Ty k=0,1,...,n) are the temperatures of the parallel plates;
T is the temperature within the region;
h is the heat-transfer coefficient;
ay, bpk=0,1, ..., n is the firing constant at the plates.
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